Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems.
نویسندگان
چکیده
The elucidation of organism-scale metabolic networks necessitates the development of integrative methods to analyze and interpret the systemic properties of cellular metabolism. A shift in emphasis from single metabolic reactions to systemically defined pathways is one consequence of such an integrative analysis of metabolic systems. The constraints of systemic stoichiometry, and limited thermodynamics have led to the definition of the flux space within the context of convex analysis. The flux space of the metabolic system, containing all allowable flux distributions, is constrained to a convex polyhedral cone in a high-dimensional space. From metabolic pathway analysis, the edges of the high-dimensional flux cone are vectors that correspond to systemically defined "extreme pathways" spanning the capabilities of the system. The addition of maximum flux capacities of individual metabolic reactions serves to further constrain the flux space and has led to the development of flux balance analysis using linear optimization to calculate optimal flux distributions. Here we provide the precise theoretical connections between pathway analysis and flux balance analysis allowing for their combined application to study integrated metabolic function. Shifts in metabolic behavior are calculated using linear optimization and are then interpreted using the extreme pathways to demonstrate the concept of pathway utilization. Changes to the reaction network, such as the removal of a reaction, can lead to the generation of suboptimal phenotypes that can be directly attributed to the loss of pathway function and capabilities. Optimal growth phenotypes are calculated as a function of environmental variables, such as the availability of substrate and oxygen, leading to the definition of phenotypic phase planes. It is illustrated how optimality properties of the computed flux distributions can be interpreted in terms of the extreme pathways. Together these developments are applied to an example network and to core metabolism of Escherichia coli demonstrating the connections between the extreme pathways, optimal flux distributions, and phenotypic phase planes. The consequences of changing environmental and internal conditions of the network are examined for growth on glucose and succinate in the face of a variety of gene deletions. The convergence of the calculation of optimal phenotypes through linear programming and the definition of extreme pathways establishes a different perspective for the understanding of how a defined metabolic network is best used under different environmental and internal conditions or, in other words, a pathway basis for the interpretation of the metabolic reaction norm.
منابع مشابه
Flux Distribution in Bacillus subtilis: Inspection on Plurality of Optimal Solutions
Linear programming problems with alternate solutions are challenging due to the choice of multiple strategiesresulting in the same optimal value of the objective function. However, searching for these solutions is atedious task, especially when using mixed integer linear programming (MILP), as previously applied tometabolic models. Therefore, judgment on plurality of optimal m...
متن کاملAdvanced stoichiometric analysis of metabolic networks of mammalian systems.
Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbia...
متن کاملFast Flux Module Detection Using Matroid Theory
Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is ...
متن کاملInterplay between Constraints, Objectives, and Optimality for Genome-Scale Stoichiometric Models
High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the ...
متن کاملA hybrid of multi-omics FBA and Bayesian factor modeling to identify pathway crosstalks
The remarkable availability of multi-omics data provides a highly comprehensive view of cellular processes at related levels of mRNA, proteins, and metabolites. Under a particular environmental condition, a bacterium may have a target of required pathway responses to achieve the desired phenotype. Therefore, one can question regarding the underlying mechanisms of those responses that enable the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 71 4 شماره
صفحات -
تاریخ انتشار 2000